Respuesta :

Given the equation:

[tex]4\ln \mleft(5x\mright)+5=2[/tex]

We will find the value of (x) as follows:

a) subtract 5 from both sides

[tex]\begin{gathered} 4\ln \mleft(5x\mright)+5-5=2-5 \\ 4\ln \mleft(5x\mright)=-3 \end{gathered}[/tex]

b) Divide both sides by 4

[tex]\ln (5x)=-\frac{3}{4}[/tex]

c) Taking the exponential of both sides to remove ln

[tex]5x=e^{-\frac{3}{4}}[/tex]

Finally, divide both sides by 5

[tex]x=\frac{1}{5}e^{-\frac{3}{4}}\approx0.09447[/tex]

So, the answer will be x = 0.09447