if the current density in a wire is given by j=alpha*r,where alpha is a constant and r is the distance from the center of the wire, 0

Given:
The current density is,
[tex]J=ar[/tex]a is a constant, and the radius of the wire is R.
To find:
The current in the wire
Explanation:
The current in the wire is,
[tex]\begin{gathered} I=\int JdA \\ =\int ardA \end{gathered}[/tex]We know,
[tex]\begin{gathered} A=\pi r^2 \\ dA=2\pi rdr \end{gathered}[/tex]So,
[tex]\begin{gathered} I=\int_0^Rar\times2\pi rdr \\ =2\pi a\int_0^Rr^2dr \\ =2\pi a\times\frac{R^3}{3} \end{gathered}[/tex]Hence, the required current is,
[tex]\frac{2\pi aR^3}{3}[/tex]