PQ is perpendicular bisector if ST. Find the values of m and n.

The given parallelogram is a Rhombus, with characteristics
1- The diagonals bisect each other at the midpoint.
2- Each diagonal divides it into two congruent triangles
3- All the sides of the Rhombus are of equal lenght.
PQ divides the figure into two congruent triangles, then the corresponding sides are equal.
If PS=TP, then
[tex]\begin{gathered} 3m+9=5m-13 \\ 3m-5m=-13-9 \\ -2m=-22 \\ -\frac{2m}{-2}=-\frac{22}{-2} \\ m=11 \end{gathered}[/tex]If SQ=QT, then
[tex]\begin{gathered} 6n-3=4n+14 \\ 6n-4n=14+3 \\ 2n=17 \\ \frac{2n}{2}=\frac{17}{2} \\ n=8.5 \end{gathered}[/tex]