Respuesta :

Answer:

[tex]\begin{gathered} \text{ Slope= 10/45} \\ y-intercept=\text{ \lparen0, -12/45\rparen} \end{gathered}[/tex]

Step-by-step explanation:

A linear function is represented by the following equation in slope-intercept form:

[tex]\begin{gathered} y=mx+b \\ where, \\ m=\text{ slope} \\ b=\text{ y-intercept} \end{gathered}[/tex]

Therefore, for the given function, isolate ''y'' and identify ''m'' for the slope and ''b'' for the y-intercept.

[tex]\begin{gathered} \text{ Use distributive property of multiplication.} \\ 10x-45y=12 \\ 45y=10x-12 \\ y=\frac{10}{45}x-\frac{12}{45} \end{gathered}[/tex]

Hence,

[tex]\begin{gathered} \text{ Slope= 10/45} \\ y-intercept=\text{ \lparen0, -12/45\rparen} \end{gathered}[/tex]