Respuesta :

Given

[tex](cot\theta+tan\theta)^2=csc^2\theta+sec^2\theta[/tex]

Explanation

From the left hand sie

[tex]\begin{gathered} (cot\theta+tan\theta)^2=cot^2\theta+2cot\theta tan\theta+tan^2\theta \\ Next \\ since\text{ tan}^2\theta=sec^2\theta-1\text{ and }cot^2=csc^2\theta-1 \\ (cot\theta+tan\theta)^2=sec^2\theta-1+2cot\theta tan\theta+csc^2\theta-1 \\ (cot\theta+tan\theta)^2=sec^2\theta-1+2\frac{cos\theta}{sin\theta}\times\frac{sin\theta}{cos\theta}+csc^2\theta-1 \\ (cot\theta+tan\theta)^2=sec^2\theta-1+2+csc\theta-1 \\ (cot\theta+tan\theta)^2=csc^2\theta+sec^2\theta \end{gathered}[/tex]