Respuesta :

The function given is,

[tex]f(x)=(x-1)^2-4[/tex]

Given that

[tex]y=f(x)[/tex]

Therefore,

[tex]y=(x-1)^2-4[/tex]

Replace x with y

[tex]x=(y-1)^2-4[/tex]

Solve for y

[tex]\begin{gathered} x+4=(y-1_{})^2 \\ \end{gathered}[/tex]

Square-rooting both sides

[tex]\begin{gathered} \pm\sqrt[]{x+4}=\sqrt[]{(y-1)^2} \\ \pm\sqrt[]{x+4}=y-1 \end{gathered}[/tex]

Add 1 to both sides

[tex]\begin{gathered} \pm\sqrt[]{x+4}+1=y-1+1 \\ \pm\sqrt[]{x+4}+1=y \\ \Rightarrow y=\pm\sqrt[]{x+4}+1 \end{gathered}[/tex]

Hence,

[tex]f^{-1}(x)=\pm\sqrt[]{x+4}+1[/tex]

The domain of the inverse function will be,

[tex]x\ge-4[/tex]

The correct answer is Option B.