Integrate the following. ∫[tex]5x^{4} dx[/tex]
Option A: [tex]x^{5}[/tex]
Option B: [tex]5x^{5} +C[/tex]
Option C:[tex]5x^{5}[/tex]
Option D: [tex]x^{5} + C[/tex]

Respuesta :

Nayefx

Answer:

[tex] \displaystyle D) {x}^{5} + \rm C[/tex]

Step-by-step explanation:

we would like to integrate the following Integral:

[tex] \displaystyle \int 5 {x}^{4} \, dx [/tex]

well, to get the constant we can consider the following Integration rule:

[tex] \displaystyle \int c{x} ^{n} \, dx = c\int {x}^{n} \, dx[/tex]

therefore,

[tex] \displaystyle 5\int {x}^{4} \, dx [/tex]

recall exponent integration rule:

[tex] \displaystyle \int {x} ^{n} \, dx = \frac{ {x}^{n + 1} }{n + 1} [/tex]

so let,

  • [tex]n = 4[/tex]

Thus integrate:

[tex] \displaystyle = 5\left( \frac{ {x}^{4+ 1} }{4 + 1} \right)[/tex]

simplify addition:

[tex] \displaystyle = 5\left( \frac{ {x}^{5} }{5} \right)[/tex]

reduce fraction:

[tex] \displaystyle = {x}^{5} [/tex]

finally we of course have to add the constant of integration:

[tex] \displaystyle \boxed{ {x}^{5} + \rm C}[/tex]

hence,

our answer is D)

The answer is D I just had this on a test.