Respuesta :

Answer:

See Below.

Step-by-step explanation:

We want to prove the trigonometric identity:

[tex]\displaystyle \frac{\sec^2(\theta)-1}{\sin(\theta)}=\frac{\sin(\theta)}{1-\sin^2(\theta)}[/tex]

To start, let's simplify the right side. Recall the Pythagorean Identity:

[tex]\sin^2(\theta)+\cos^2(\theta)=1[/tex]

Therefore:

[tex]\cos^2(\theta)=1-\sin^2(\theta)[/tex]

Substitute:

[tex]\displaystyle \frac{\sin(\theta)}{1-\sin^2(\theta)}=\frac{\sin(\theta)}{\cos^2(\theta)}[/tex]

Split:

[tex]\displaystyle =\frac{\sin(\theta)}{\cos(\theta)}\left(\frac{1}{\cos(\theta)}\right)=\tan(\theta)\sec(\theta)[/tex]

Therefore, our equation becomes:

[tex]\displaystyle \frac{\sec^2(\theta)-1}{\sin(\theta)}=\tan(\theta)\sec(\theta)[/tex]

From the Pythagorean Identity, we can divide both sides by cos²(θ). This yields:

[tex]\displaystyle \tan^2(\theta)+1=\sec^2(\theta)[/tex]

So:

[tex]\tan^2(\theta)=\sec^2(\theta)-1[/tex]

Substitute:

[tex]\displaystyle \frac{\tan^2(\theta)}{\sin(\theta)}=\tan(\theta)\sec(\theta)[/tex]

Rewrite:

[tex]\displaystyle (\tan(\theta))^2\left(\frac{1}{\sin(\theta)}\right)=\tan(\theta)\sec(\theta)[/tex]

Recall that tan(θ) = sin(θ)/cos(θ). So:

[tex]\displaystyle \frac{\sin^2(\theta)}{\cos^2(\theta)}\left(\frac{1}{\sin(\theta)}\right)=\tan(\theta)\sec(\theta)[/tex]

Simplify:

[tex]\displaystyle \frac{\sin(\theta)}{\cos^2(\theta)}=\tan(\theta)\sec(\theta)[/tex]

Simplify:

[tex]\tan(\theta)\sec(\theta)=\tan(\theta)\sec(\theta)}[/tex]

Hence proven.