Respuesta :

Answer: [tex]i=5[/tex]

Step-by-step explanation:

[tex]\frac{9}{8}(4i+64)=\frac{5}{8} i+\frac{731}{8}[/tex]

Let's begin by distributing the [tex]\frac{9}{8}[/tex] .

[tex](\frac{9}{8} )(4i)+(\frac{9}{8} )(64)=\frac{5}{8} i+\frac{731}{8}[/tex]

We can simplify 4 and 8.

4/4=1

8/4=2

[tex](\frac{9}{2})(i)[/tex]

We can also simplify 64 and 8.

64/8=8

8/8=1

[tex](9)(8)[/tex]

So our equation would be;

[tex](\frac{9}{2}) (i)+(9)(8)=\frac{5}{8}i+\frac{731}{8}[/tex]

Solve the parentheses.

[tex]\frac{9}{2}i+72=\frac{5}{8} i+\frac{731}{8}[/tex]

Substract [tex]\frac{5}{8}i[/tex] on both sides to isolate the terms with ''i'' in the left side. And also substract 72 on both sides to move the independent terms to the right side.

[tex](-\frac{5}{8}i-72)+\frac{9}{2}i+72=\frac{5}{8} i+\frac{731}{8}+(-\frac{5}{8}i-72)[/tex]

Solve;

[tex]\frac{9}{2}i-\frac{5}{8}i=\frac{731}{8}-72[/tex]

Solve the substraction on both sides.

[tex]\frac{(9)(8)-(2)(5)}{(2)(8)} i=\frac{731-(8)(72)}{8}[/tex]

[tex]\frac{72-10}{16}i=\frac{731-576}{8}[/tex]

[tex]\frac{62}{16}i=\frac{155}{8}[/tex]

Simplify 62 and 16.

62/2=31

16/2=8

[tex]\frac{31}{8}i=\frac{155}{8}[/tex]

Multiply on both sides by the reciprocal of [tex]\frac{31}{8}[/tex] to isolate i.

The reciprocal is the inverse fraction. [tex]\frac{8}{31}[/tex]

[tex](\frac{8}{31} )(\frac{31}{8}i)=(\frac{155}{8}) (\frac{8}{31} )[/tex]

In the right side, you can simplify 8 and 8 leaving;

[tex]i=\frac{155}{31}[/tex]

[tex]i=5[/tex] This is your result.