Respuesta :

Answer:

[tex]h'(-4) = 5760[/tex]

Step-by-step explanation:

We are given the function:

[tex]\displaystyle h(x) = (f\circ g)(x)[/tex]

And we want to find h'(-4) given:

[tex]\displaystyle f(x) = -6x^2 + 7[/tex]

And that the equation of the tangent line of g at x = -4 is y = 10x - 8.

Recall that (f ∘ g)(x) = f(g(x)). Hence:

[tex]\displaystyle h(x) = f(g(x))[/tex]

Find h'(x). We can take the derivative of both sides with respect to x:

[tex]\displaystyle \frac{d}{dx}\left[ h(x)\right] = \frac{d}{dx}\left[ f(g(x))\right][/tex]

By the chain rule:

[tex]\displaystyle h'(x) = f'(g(x)) \cdot g'(x)[/tex]

Therefore:

[tex]\displaystyle h'(-4) = f'(g(-4)) \cdot g'(-4)[/tex]

A) Finding f'(g(-4)):

Recall that we are given that the equation of the tangent line of g at x = -4 is:

[tex]\displaystyle y = 10x - 8[/tex]

Since this is tangent, it tells us that at x = -4, line y touches g. Therefore, y(-4) = g(-4). Find y(-4):

[tex]\displaystyle \begin{aligned} y(-4)&= 10(-4) - 8 \\ \\ &= -48\end{aligned}[/tex]

Hence, g(-4) = -48. Consequently, f'(g(-4)) = f'(-48).

Find f'(x):

[tex]\displaystyle \begin{aligned} f'(x) &= \frac{d}{dx}\left[ -6x^2 + 7\right] \\ \\ &= -12x\end{aligned}[/tex]

So:

[tex]\displaystyle \begin{aligned} f'(-48) &= -12(-48) \\ \\ &= 576\end{aligned}[/tex]

Therefore, f'(g(-4)) = 576.

B) Finding g'(-4):

Recall that by definition, the derivative of a function at a point is the slope of the tangent line to the point.

The tangent line to g at x = -4 is given by:

[tex]y = 10 x- 8[/tex]

The slope of the line is 10. Therefore:

[tex]g'(-4) = 10[/tex]

Hence:

[tex]\displaystyle \begin{aligned}h'(-4) &= f'(g(-4)) \cdot g'(-4) \\ \\ &= (576) \cdot (10) \\ \\ &= 5760 \end{aligned}[/tex]

In conclusion:

[tex]h'(-4) = 5760[/tex]