Answer:
(a) [tex]x^2+25=(x-5)^2+2\times x\times 5=(x-5)^2+10x[/tex]
(b) x = -5, -5
Step-by-step explanation:
We have given that the equation
(a) [tex]x^2+25=0[/tex]
We have to factorize the equation
We know that [tex](a-b)^2=a^2+b^2-2ab[/tex]
So [tex](a-b)^2+2ab=a^2+b^2[/tex]
So [tex]x^2+25=(x-5)^2+2\times x\times 5=(x-5)^2+10x[/tex]
(B) We have given equation [tex]x^2+10x+25[/tex]
It can be factorize as [tex]x^2+10x+25=x^2+5x+5x+25=x(x+5)+5(x+5)[/tex]
Now taking x+5 as common
[tex](x+5)(x+5)[/tex] = 0
x= -5 , -5