Respuesta :
Answer:
The given trapezium is not an isosceles trapezium.
Step-by-step explanation:
Given:
Coordinates of the vertices of a trapezium:
- [tex]W (x_w,y_w)=(-1,2)[/tex]
- [tex]X(x_x,y_x)=(2,2)[/tex]
- [tex]Y(x_y,y_y)=(3,-1)[/tex]
- [tex]Z(x_z,y_z)=(-3,-1)[/tex]
A trapezoid is a convex-quadrilateral whose one pair of opposite sides are parallel but not equal in length, which lead to a pair of non-parallel sides.
- It holds all the properties of a convex- quadrilateral.
- When the non-parallel sides of the the trapezium are equal in length then the trapezium is said to be isosceles.
From the attached schematic we find the length of the non-parallel sides.
We know that the distance between two points can be evaluated as:
[tex]XY=\sqrt{(x_x-x_y)^2+(y_x-y_y)^2}[/tex]
[tex]XY=\sqrt{(2-3)^2+(2-(-1))^2}[/tex]
[tex]XY=\sqrt{10}[/tex] ..............................................(1)
Now,
[tex]ZW=\sqrt{(x_z-x_w)^2+(y_z-y_w)^2}[/tex]
[tex]ZW=\sqrt{(-3-(-1))^2+(-1-2)^2}[/tex]
[tex]ZW=\sqrt{13}[/tex] .........................................(2)
Therefore, from eq. (1) & (2) we can conclude that the given trapezium is not an isosceles trapezium.
