An object is placed in front of a convex mirror with a radius of curvature of magnitude 10 cm. The mirror produces an image that is 4 cm behind the mirror. How far from the mirror was the object placed?
What is the magnification?

Respuesta :

Answer:

u = - 20 cm

m =[tex]\frac{1}{5}[/tex]

Given:

Radius of curvature, R = 10 cm

image distance, v = 4 cm

Solution:

Focal length of the convex mirror, f:

f = [tex]\frac{R}{2} = \frac{10}{2} = 5 cm[/tex]

Using Lens' maker formula:

[tex]\frac{1}{f} = \frac{1}{u} + \frac{1}{v}[/tex]

Substitute the given values in the above formula:

[tex]\frac{1}{5} = \frac{1}{u} + \frac{1}{4}[/tex]

[tex]\frac{1}{u} = \frac{1}{5} - \frac{1}{4}[/tex]

u = - 20 cm

where

u = object distance

Now, magnification is the ratio of image distance to the object distance:

magnification, m =[tex]\frac{|v|}{|u|}[/tex]

magnification, m =[tex]\frac{|4|}{|-20|}[/tex]

m =[tex]\frac{4}{20}[/tex]

m =[tex]\frac{1}{5}[/tex]