Respuesta :

Given the right triangle ABC

C = 90°

c = hyppotenusse

A=80°

a=18

B= 180-80-90 = 10°

Using the law of sines

[tex]\frac{a}{Sin(A)}=\frac{b}{Sin(B)}=\frac{c}{Sin(C)}[/tex][tex]\frac{18}{Sin(80)}=\frac{b}{Sin(10)}=\frac{c}{Sin(90)}[/tex]

Solving for b

[tex]\frac{18}{sin(80)}=\frac{b}{sin(10)}[/tex][tex]sin\left(10\right)*\frac{18}{sin(80)}=b[/tex][tex]b=3.174[/tex]

Solving for c

[tex]\frac{18}{s\imaginaryI n(80)}=\frac{c}{s\imaginaryI n(90)}[/tex][tex]s\mathrm{i}n(90)*\frac{18}{s\imaginaryI n(80)}=c[/tex][tex]c=18.278[/tex]

Ver imagen MaxemilianoU455581