Respuesta :

Answer:

A. [tex]x=6[/tex] or [tex]x=1[/tex]

Step-by-step explanation:

The given function is:

[tex]y=x^2-7x+6[/tex]

When y=0; we have:

[tex]x^2-7x+6=0[/tex]

[tex]x^2-6x-x+6=0[/tex]

Factor by grouping:

[tex]x(x-6)-1(x-6)=0[/tex]

[tex](x-6)(x-1)=0[/tex]

Either [tex](x-6)=0[/tex] or [tex](x-1)=0[/tex]

Either [tex]x=6[/tex] or [tex]x=1[/tex]