Respuesta :

Since, this is parallelogram

so, opposite sides are equal

We will find value of sides

Calculation of AB:

we are given point A=(-2,3)

point B=(4,0)

we can use distance formula

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

now, we can plug values

[tex]AB=\sqrt{(4+2)^2+(3-0)^2}[/tex]

[tex]AB=3\sqrt{5}[/tex]

Since, this is parallelogram

so, opposite sides are equal

so,

[tex]CD=AB=3\sqrt{5}[/tex]

Calculation of AD:

point A =(-2,3)

point D=(-5,2)

we can use distance formula

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

now, we can plug values

[tex]AD=\sqrt{(-5+2)^2+(2-3)^2}[/tex]

[tex]AD=\sqrt{10}[/tex]

Since, this is parallelogram

so, opposite sides are equal

so,

[tex]BC=AD=\sqrt{10}[/tex]

Calculation of AE:

point A=(-2,3)

point E=(-3,1)

we can use distance formula

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

now, we can plug values

[tex]AE=\sqrt{(-3+2)^2+(1-3)^2}[/tex]

[tex]AE=\sqrt{5}[/tex]

(a)

we know that

perimeter of a parallelogram is sum of all sides

so,

perimeter is

[tex]=AB+BC+CD+DA[/tex]

now, we can plug values

[tex]=3\sqrt{5}+\sqrt{10}+3\sqrt{5}+\sqrt{10}[/tex]

[tex]=6\sqrt{5}+2\sqrt{10}[/tex]...........Answer

(b)

we can use area of parallelogram formula

[tex]A=AE\times CD[/tex]

we can plug values

[tex]A=\sqrt{5}\times 3\sqrt{5}[/tex]

[tex]A=15[/tex]............Answer