Respuesta :

[tex]9x^3 + 9x^2y - 4x - 4y[/tex]

[tex] = 9x^2(x + y) -4(x + y)[/tex]

[tex] = (x +y)(9x^2-4)[/tex]

[tex] = (x +y)(3x - 2)(3x + 2)[/tex]

Answer:

[tex](x+y)(3x+2)(3x-2)[/tex]

Step-by-step explanation:

The given expression is [tex]9x^3+9x^2y-4x-4y[/tex]

Make group as shown below

[tex](9x^3+9x^2y)+(-4x-4y)[/tex]

Factor out GCF from each of the group

[tex]9x^2(x+y)-4(x+y)[/tex]

Now, factored out the common term

[tex](x+y)(9x^2-4)[/tex]

Now, rewrite the expression in perfect square form

[tex](x+y)((3x)^2-2^2)[/tex]

Apply the difference of squares formula: [tex]a^2-b^2=(a+b)(a-b)[/tex]

[tex](x+y)(3x+2)(3x-2)[/tex]

Hence, the factored form of the given expression is

[tex](x+y)(3x+2)(3x-2)[/tex]