Respuesta :
I’ll show you step by step:
v=1/3bh
Multiplying both sides by 3:
3v=bh
Dividing both sides by h:
3v/h=b
Therefore,
b=3v/h
v=1/3bh
Multiplying both sides by 3:
3v=bh
Dividing both sides by h:
3v/h=b
Therefore,
b=3v/h
We use Justin Bieber's Theorem of "It don't make no sense unless I'm doin' it with you":
[tex]\textbf{The formula } V = \frac{1}{3}bh \textbf{ has a solution of } b = \frac{3V}{h}\\\textbf{when solved for b.}[/tex]
[tex]\displaystyle V = \frac{1}{3}bh \\ \\ \frac{dV}{dV} = \frac{d}{dV} \frac{1}{3}bh \\ \\ \frac{dV}{dV} = \frac{1}{3}\left(b \frac{dh}{dV} + h\frac{db}{dV} \right) \\ \\ 3(1)= b \frac{dh}{dV} + h\frac{db}{dV} \\ \\ 3 - h\frac{db}{dV} = b \frac{dh}{dV} \\ \\ \\ b = \frac{3 - h\frac{db}{dV} }{ \frac{dh}{dV} }[/tex]
It can be shown that [tex]3 - h\frac{db}{dV} = 3v[/tex] and [tex]\frac{dh}{dV} = h[/tex] so therefore [tex]b = \frac{3V}{h} [/tex]
[tex]\textbf{The formula } V = \frac{1}{3}bh \textbf{ has a solution of } b = \frac{3V}{h}\\\textbf{when solved for b.}[/tex]
[tex]\displaystyle V = \frac{1}{3}bh \\ \\ \frac{dV}{dV} = \frac{d}{dV} \frac{1}{3}bh \\ \\ \frac{dV}{dV} = \frac{1}{3}\left(b \frac{dh}{dV} + h\frac{db}{dV} \right) \\ \\ 3(1)= b \frac{dh}{dV} + h\frac{db}{dV} \\ \\ 3 - h\frac{db}{dV} = b \frac{dh}{dV} \\ \\ \\ b = \frac{3 - h\frac{db}{dV} }{ \frac{dh}{dV} }[/tex]
It can be shown that [tex]3 - h\frac{db}{dV} = 3v[/tex] and [tex]\frac{dh}{dV} = h[/tex] so therefore [tex]b = \frac{3V}{h} [/tex]