Respuesta :

Question:

Consider the graph of function f.

[tex]f\left(x\right)=\sqrt{x-4}-1[/tex]

( graph in photo below )

What is the domain of function f?

Answer:

[tex]\left(4,\ \infty\right)[/tex]

Explanation:

( In photo below )

Ver imagen websitetechie
Ver imagen websitetechie
Ver imagen websitetechie

The domain will be [tex](-2, 2) \bigcup (3, \infty )[/tex]

Function

It shows the relationship between variables.

Given

[tex]\rm f(x) = \sqrt{\dfrac{x^{2}-4 }{x-3} }[/tex]

How to get the domain?

At -2 < x < 2 It is defined

At x=2, the numerator becomes zero. But the denominator becomes negative so the function becomes imaginary.

At x=3, the denominator becomes zero that is not defined.

so, the domain will be [tex](-2, 2) \bigcup (3, \infty )[/tex].

More about the function link is given below.

https://brainly.com/question/5245372