Respuesta :

y=x^2+6x+7
or
x^2 +6x+7=y

Answer:

[tex]f(x)=x^2+6x+7[/tex]

Step-by-step explanation:

The vertex form of a parabola is

[tex]f(x)=a(x-h)^2+k[/tex]         .... (1)

where, a is a constant, (h,k) is vertex of the parabola.

From the given graph it is clear that the vertex of the parabola is (-3,-2).

Substitute h=-3 and k=-2 in equation (1).

[tex]f(x)=a(x-(-3))^2+(-2)[/tex]

[tex]f(x)=a(x+3)^2-2[/tex]         .... (2)

The graph is passes through the point (-2,-1). So, the function must be satisfy by the point (-2,-1).

[tex]-1=a(-2+3)^2-2[/tex]

[tex]-1=a-2[/tex]

Add 2 on both sides.

[tex]-1+2=a-2+2[/tex]

[tex]1=a[/tex]

The value of a is 1. Substitute this value in equation (2).

[tex]f(x)=(1)(x+3)^2-2[/tex]

[tex]f(x)=(x+3)^2-2[/tex]

[tex]f(x)=x^2+6x+9-2[/tex]

[tex]f(x)=x^2+6x+7[/tex]

Therefore, the standard form of the parabola is [tex]f(x)=x^2+6x+7[/tex].