Respuesta :
V(cone)= 1/3 *πr²*h
Density= mass/volume
D=m/(1/3 *πr²*h)=3m/πr²*h
D=(3*6g)/(π(5cm)²*2cm)=0.115 g/cm³
D=0.115 g/cm³
Density= mass/volume
D=m/(1/3 *πr²*h)=3m/πr²*h
D=(3*6g)/(π(5cm)²*2cm)=0.115 g/cm³
D=0.115 g/cm³
The volume of a cone is [tex]\frac{ \pi r^{2}h}{3} [/tex]
Now we can input the values you needed [tex] \frac{ \pi (25)(2)}{3} = 52.35987... [/tex]
We can take that in to the formula for density which is [tex] \frac{mass}{volume} [/tex]
So the density is equal to [tex] \frac{6 grams}{52.35987cm^3} = 0.11[/tex]
Now we can input the values you needed [tex] \frac{ \pi (25)(2)}{3} = 52.35987... [/tex]
We can take that in to the formula for density which is [tex] \frac{mass}{volume} [/tex]
So the density is equal to [tex] \frac{6 grams}{52.35987cm^3} = 0.11[/tex]