Respuesta :

It translates to addition.

General Idea:

We can use the product rule for exponentiation to derive a corresponding product rule for logarithms.

[tex] e^a \cdot e^b=e^{a+b} [/tex]

Also we know[tex] e^{ln(m)}=m [/tex]

Using the above rule we can write the below equation...

[tex] e^{ln(xy)}=xy \; \rightarrow 1^{st} \; equation\\ \\ e^{ln(x)}=x \; \rightarrow \; 2^{nd} \; equation\\ \\ e^{ln(y)}=y \; \rightarrow \; 3^{rd} \; equation\\ \\ Substituting \; 2^{st} \; equation \; and \; 3^{rd} \; equation\; in\; 1^{st}\; equation, \; we\; get...\\ \\ e^{ln(xy)}=e^{ln(x)} \cdot e^{ln(y)}\\ \\ Applying \; the \; formula\; of\; exponent\; in\; right\; sides\; of\; equation\\ \\ e^{ln(xy)}=e^{ln(x)+ln(y)}\\ \\ Taking \; natural \; logarithm\; on\; both\; sides\\ \\ [/tex]

[tex] ln[e^{ln(xy)}]=ln[e^{ln(x)+ln(y)}]\\ \\ And \; using\; the\; formula\; lnm^n=n(lnm), we\; get...\\ \\ ln(xy)=ln(x)+ln(y) [/tex]

Conclusion:

The product rule for exponentiation

[tex] e^{x} \cdot e^{y}=e^{x+y} [/tex]

The product rule of logarithms

[tex] ln(xy)=ln(x)+ln(y) [/tex]