Respuesta :
x = number of servers
y = number of guests
[tex]\text {number of guest per table = } 4[/tex]
[tex]\text {number of tables = } \dfrac{y}{4} [/tex]
[tex]\text {number of servers needed = } \dfrac{y}{4} \div 12[/tex]
[tex]\text {number of servers needed = } \dfrac{y}{4} \times \dfrac{1}{12} [/tex]
[tex]\text {number of servers needed = } \dfrac{y}{48} [/tex]
There must be at least 1 server for every 12 tables:
[tex]x \geq \dfrac{y}{48} [/tex]
y = number of guests
[tex]\text {number of guest per table = } 4[/tex]
[tex]\text {number of tables = } \dfrac{y}{4} [/tex]
[tex]\text {number of servers needed = } \dfrac{y}{4} \div 12[/tex]
[tex]\text {number of servers needed = } \dfrac{y}{4} \times \dfrac{1}{12} [/tex]
[tex]\text {number of servers needed = } \dfrac{y}{48} [/tex]
There must be at least 1 server for every 12 tables:
[tex]x \geq \dfrac{y}{48} [/tex]