Respuesta :
(x^-4y/x^-9y^5)^-2 = [tex]( \frac{x^{-4} y}{x^{-9} y^{5} } )^{-2} \\ \\ Distribute\ the \ outer \ exponent \\ \\ = \frac{x^{8} y^{-2} }{x^{18} y^{-10} } \\ \\ factor \ by \ subtracting \ exponents \\ \\ = \frac{y^{8} }{ x^{10} } [/tex]
Answer:
[tex]\frac{y^8}{x^{10}}[/tex]
Step-by-step explanation:
The given expression is
[tex](\frac{x^{-4}y}{x^{-9}y^5})^{-2}[/tex]
Distribute -2 inside the parenthesis
multiply -2 with each exponent
[tex](\frac{x^{8}y^{-2}}{x^{18}y^{-10}})[/tex]
Simplify it further
a^m/a^n= a^m-n
x^8/x^18 = x^-10
y^-2 / y^-10 = y^8
So final answer is
[tex]\frac{x^{-10}y^8}{1}[/tex]
write the answer with positive exponent
[tex]\frac{y^8}{x^{10}}[/tex]