Respuesta :
h(x)=(f o g)(x)=f(g(x)) =>
[tex]\sqrt{x}+5=\sqrt{g(x)}+2[/tex]
[tex]\sqrt{g(x)}=\sqrt{x}+5-2[/tex]
[tex]\sqrt{g(x)}=\sqrt{x}+3[/tex]
[tex]g(x)=(\sqrt{x}+3)^2[/tex]
[tex]=(x+6\sqrt{x}+9)^2[/tex]
[tex]\sqrt{x}+5=\sqrt{g(x)}+2[/tex]
[tex]\sqrt{g(x)}=\sqrt{x}+5-2[/tex]
[tex]\sqrt{g(x)}=\sqrt{x}+3[/tex]
[tex]g(x)=(\sqrt{x}+3)^2[/tex]
[tex]=(x+6\sqrt{x}+9)^2[/tex]
we are given
[tex]h(x)=(fog)(x)[/tex]
we can write it as
[tex]h(x)=f(g(x))[/tex]
[tex]f(x)=\sqrt{x+2}[/tex]
now, we can replace x as g(x)
[tex]f(g(x))=\sqrt{g(x)+2}[/tex]
[tex]h(x)=\sqrt{g(x)+2}[/tex]
[tex]h(x)=\sqrt{x+5}[/tex]
now, we can equate them
[tex]\sqrt{x+5}=\sqrt{g(x)+2}[/tex]
now, we can solve for g(x)
Take square both sides
[tex](\sqrt{x+5})^2=(\sqrt{g(x)+2})^2[/tex]
[tex]x+5=g(x)+2[/tex]
now, we can solve for g(x)
Subtract both sides by 2
[tex]x+5-2=g(x)+2-2[/tex]
[tex]x+3=g(x)[/tex]
[tex]g(x)=x+3[/tex].............Answer