Respuesta :
the correct functions are
h(x) = 3x + 2
g(x) = 2^x
I proceed to calculate the different values of K (x)
case 1) k(x) = g(x) ∘ h(x)
g(x) ∘ h(x)=g(h(x))
k(x) = [2]^[3x + 2]-----------> is the option 4. k(x) = 2^(3x + 2 )
case 2) k(x) = g(x) + h(x)
k(x) = [2^x]+[3x + 2]=2^x+3x+2--------> is the option 1.) k(x) = 2^x + 3x + 2
case 3)k(x) = h(x) ÷ g(x)
k(x) = [3x + 2]/[2^x]=3x/(2^x)+2/(2^x)=3x*(2^-x)+2^(1-x)
is the option 3.) k(x) = (3x)2^(-x) + 2^(-x + 1 )
case 4)k(x) = g(x) - h(x)
k(x) = [2^x]-[3x + 2]=2^x-3x-2--------> is the option 2.) k(x) = 2^x - 3x - 2
case 5) k(x) = g(x) × h(x)
k(x) = [2^x]*[3x + 2]-----------> is the option 5.) k(x) = 2^x(3x + 2)
case 6)k(x) = h(x) ∘ g(x)
h(x) ∘ g(x)=h(g(x))
k(x)=3*[2^x]+2---------------> is the option 6. k(x) = 3(2^x) + 2
h(x) = 3x + 2
g(x) = 2^x
I proceed to calculate the different values of K (x)
case 1) k(x) = g(x) ∘ h(x)
g(x) ∘ h(x)=g(h(x))
k(x) = [2]^[3x + 2]-----------> is the option 4. k(x) = 2^(3x + 2 )
case 2) k(x) = g(x) + h(x)
k(x) = [2^x]+[3x + 2]=2^x+3x+2--------> is the option 1.) k(x) = 2^x + 3x + 2
case 3)k(x) = h(x) ÷ g(x)
k(x) = [3x + 2]/[2^x]=3x/(2^x)+2/(2^x)=3x*(2^-x)+2^(1-x)
is the option 3.) k(x) = (3x)2^(-x) + 2^(-x + 1 )
case 4)k(x) = g(x) - h(x)
k(x) = [2^x]-[3x + 2]=2^x-3x-2--------> is the option 2.) k(x) = 2^x - 3x - 2
case 5) k(x) = g(x) × h(x)
k(x) = [2^x]*[3x + 2]-----------> is the option 5.) k(x) = 2^x(3x + 2)
case 6)k(x) = h(x) ∘ g(x)
h(x) ∘ g(x)=h(g(x))
k(x)=3*[2^x]+2---------------> is the option 6. k(x) = 3(2^x) + 2
To simplify the other user's answer (which is correct):
1 = B
2 = D
3 = C
4 = A
5 = E
6 = F
Alternatively, your right boxes should look like:
4
1
3
2
5
6