Respuesta :

Answer:

[tex]a^{4}-b^{4}=(a^{2}+b^{2})(a^{2}-b^{2})[/tex]

Step-by-step explanation:

The given expression is

[tex]a^{4}-b^{4}[/tex]

This expression is the difference of two perfect squares, and their square roots are

[tex]\sqrt{a^{4}} =a^{2}\\ \sqrt{b^{4}} =b^{2}[/tex]

Now, the difference of two perfect squares can be factored as

[tex]x^{2} -y^{2}=(x+y)(x-y)[/tex]

So, if we apply this rule, the result would be

[tex]a^{4}-b^{4}=(a^{2}+b^{2})(a^{2}-b^{2})[/tex]

Therefore, the simplest form of the binomial expression is

[tex]a^{4}-b^{4}=(a^{2}+b^{2})(a^{2}-b^{2})[/tex]

Answer and work in images

Ver imagen 22cmhoward
Ver imagen 22cmhoward

Otras preguntas