Find all real values of $v$ that satisfy the equation $(v+6)^2 = 324$. If you find more than one, then list your values in increasing order, separated by commas.

Respuesta :

we have that

(v+6)^2 = 324-----> I raise to 1/2 both members----> [(v+6)^2]^(1/2)=(324)^(1/2)[(v+6)]=(324)^(1/2)-------------> v+6=√324
v=√324-6---------> 18-6=12
v=12

the answer is v=12

Answer:

The values of v in increasing order are, -24, 12

Step-by-step explanation:

Given equation is,

[tex](v+6)^2=324[/tex]

[tex]v+6=\pm 18[/tex]

[tex]v=-6\pm 18[/tex]

[tex]\implies v=-6-18\text{ or }v=-6+18[/tex]

[tex]\implies v = -24\text{ or }v=12[/tex]

Since, -24 < 12

Thus, the values of v in increasing order are,

-24, 12