Respuesta :
Since the function is:
[tex] \frac{x-8}{ x^{2} -3x+2} [/tex]
Now factorize the denominator:
[tex]\frac{x-8}{ x^{2} -x-2x+2}[/tex]
[tex]\frac{x-8}{ x(x-1) -2(x-1 ) }[/tex]
[tex]\frac{x-8}{ (x-1) (x-2 ) }[/tex]
Now put the denominator equals to zero:
[tex] (x-1) (x-2 ) = 0[/tex]
Now take each one of them separately to find the vertical asymptotes:
[tex]x-1 =0, x-2=0[/tex]
Ans: So there are TWO asymptotes:
1) x = 1.
2) x = 2.
-i
[tex] \frac{x-8}{ x^{2} -3x+2} [/tex]
Now factorize the denominator:
[tex]\frac{x-8}{ x^{2} -x-2x+2}[/tex]
[tex]\frac{x-8}{ x(x-1) -2(x-1 ) }[/tex]
[tex]\frac{x-8}{ (x-1) (x-2 ) }[/tex]
Now put the denominator equals to zero:
[tex] (x-1) (x-2 ) = 0[/tex]
Now take each one of them separately to find the vertical asymptotes:
[tex]x-1 =0, x-2=0[/tex]
Ans: So there are TWO asymptotes:
1) x = 1.
2) x = 2.
-i
Answer:
pt.1) x=1 and x=2
pt.2) x=-4 and x=4
Step-by-step explanation:
edguty