Answer:
Step-by-step explanation:
From the figure, it is given that:
The coordinates of P are: (-3,3)
The coordinates of Q are: (2,1)
and The coordinates of R are: (-4,-2)
Now, the mid point of the segment PR is:
[tex]D=(\frac{-3-4}{2},\frac{3-2}{2})[/tex]
[tex]D=(\frac{-7}{2},\frac{1}{2})[/tex]
Also, the mid point of the segment QR is:
[tex]E=(\frac{2-4}{2},\frac{1-2}{2})[/tex]
[tex]E=(\frac{-2}{2},\frac{-1}{2})[/tex]
[tex]E=(-1,\frac{-1}{2})[/tex]
Therefore, the coordinates of the end points of the segment parallel to PQ are:
[tex]D=(\frac{-7}{2},\frac{1}{2})[/tex] and [tex]E=(-1,\frac{-1}{2})[/tex].