Respuesta :
[tex]\log { x } -\log { 9 } =1\\ \\ \log { \left( \frac { x }{ 9 } \right) } =1\\ \\ \log _{ 10 }{ \left( \frac { x }{ 9 } \right) } =1\\ \\ { 10 }^{ 1 }=\frac { x }{ 9 } \\ \\ 9\cdot 10=x\\ \\ x=90[/tex]
This is because:
[tex]\log _{ a }{ \left( \frac { x }{ p } \right) } \\ \\ =\log _{ a }{ \left( \frac { { a }^{ m } }{ { a }^{ n } } \right) } \\ \\ =\log _{ a }{ \left( { a }^{ \left( m-n \right) } \right) } \\ \\ =\left( m-n \right) \cdot \log _{ a }{ a } \\ \\ =m-n\\ \\ =\log _{ a }{ x } -\log _{ a }{ p } \\ [/tex]
This is because:
[tex]\log _{ a }{ \left( \frac { x }{ p } \right) } \\ \\ =\log _{ a }{ \left( \frac { { a }^{ m } }{ { a }^{ n } } \right) } \\ \\ =\log _{ a }{ \left( { a }^{ \left( m-n \right) } \right) } \\ \\ =\left( m-n \right) \cdot \log _{ a }{ a } \\ \\ =m-n\\ \\ =\log _{ a }{ x } -\log _{ a }{ p } \\ [/tex]
log(x) - log(9) = 1
Subtracting the logs of numbers gives you the log of
the quotient of the numbers.
Log(x) - log(9) is the log of (x/9).
So the equation says: log (x/9) = 1
Raise 10 to the power of each side: 10^(log of x/9) = 10^1
But 10^(log of x/9) is x/9, and 10^1 is 10.
So x/9 = 10
x = 90