Respuesta :
[tex]\bf \sqrt[5]{x^4}\cdot \sqrt[5]{x^4}\implies \sqrt[5]{x^4\cdot x^4}\implies \sqrt[5]{x^{4+4}}\implies \sqrt[5]{x^8}\implies \sqrt[5]{x^{5+3}}
\\\\\\
\sqrt[5]{x^5\cdot x^3}\implies x\sqrt[5]{x^3}[/tex]
Answer:
The simplified form will be: [tex]x\sqrt[5]{x^3}[/tex]
Step-by-step explanation:
The given expression is: [tex]\sqrt[5]{x^4}*\sqrt[5]{x^4}[/tex]
Simplifying the above expression......
[tex]\sqrt[5]{x^4}*\sqrt[5]{x^4}\\ \\ =\sqrt[5]{x^4*x^4}\\ \\ =\sqrt[5]{x^4^+^4}\ [Exponents\ gets\ added\ while\ multiplication]\\ \\ =\sqrt[5]{x^8}\\ \\ =\sqrt[5]{x^5*x^3}\ [As\ 5+3=8] \\ \\ =\sqrt[5]{x^5}*\sqrt[5]{x^3}\\ \\ =x\sqrt[5]{x^3}[/tex]
So, the simplified form will be: [tex]x\sqrt[5]{x^3}[/tex]