Respuesta :

4ex=6−e−x4ex=6-e-xDivide each term by 44 and simplify.ex=32e−x4ex=32-e-x4Take the natural logarithm of both sides of the equation to remove the variable from the exponent.ln(ex)=ln(32e−x4)ln(ex)=ln(32-e-x4)Use logarithm rules to move xx out of the exponent.xln(e)=ln(32e−x4)xln(e)=ln(32-e-x4)The natural logarithm of ee is 11.x⋅1=ln(32e−x4)x⋅1=ln(32-e-x4)Multiply xx by 11 to get xx.x=ln(32e−x4)x=ln(32-e-x4)Simplify the right side.x=ln(6−e−x4)x=ln(6-e-x4)Since ln(6−e−x4)ln(6-e-x4) contains the variable to solve for, move it to the left side of the equation by subtracting ln(6−e−x4)ln(6-e-x4)from both sides.x−ln(6−e−x4)=0x-ln(6-e-x4)=0The roots of this equation could not be found algebraically, so the roots were determined numerically.x=−1.655571,0.269276
4ex=6−e−x4ex=6-e-xDivide each term by 44 and simplify.ex=32−e−x4ex=32-e-x4Take the natural logarithm of both sides of the equation to remove the variable from the exponent.ln(ex)=ln(32−e−x4)ln(ex)=ln(32-e-x4)Use logarithm rules to move xx out of the exponent.xln(e)=ln(32−e−x4)xln(e)=ln(32-e-x4)The natural logarithm of ee is 11.x⋅1=ln(32−e−x4)x⋅1=ln(32-e-x4)Multiply xx by 11 to get xx.x=ln(32−e−x4)x=ln(32-e-x4)Simplify the right side.x=ln(6−e−x4)x=ln(6-e-x4)Since ln(6−e−x4)ln(6-e-x4) contains the variable to solve for, move it to the left side of the equation by subtracting ln(6−e−x4)ln(6-e-x4)from both sides.x−ln(6−e−x4)=0x-ln(6-e-x4)=0The roots of this equation could not be found algebraically, so the roots were determined numerically.x=−1.655571,0.269276 This makes no sense to me. do you mind splitting it up