What is the equation of the line that is parallel to the line y − 1 = 4(x + 3) and passes through the point (4, 32)?

A)y = –x + 33
B)y = –x + 36
C)y = 4x − 16
D)y = 4x + 16

Respuesta :

The parallel line has the same slope, which is 4. y=4x+c and we find c by plugging in the point:
32=4×4+c, c=32-16=16 so y=4x+16, answer D.

The equation of line that is parallel to the line [tex]y-1=4\left({x+3}\right)[/tex]   and passes through the point [tex]\left({4,32}\right)[/tex]  is [tex]\boxed{{\mathbf{y=4x+16}}}[/tex]  and it matches with [tex]\boxed{{\mathbf{OPTION}}\,{\mathbf{D}}}[/tex] .

Further explanation:

It is given that the equation of line is [tex]y-1=4\left({x+3}\right)[/tex]  and passes through point [tex]\left({4,32}\right)[/tex] .

Rewrite the given equation [tex]y-1=4\left({x+3}\right)[/tex]  as follows:

[tex]\begin{aligned}y-1&=4\left({x+3}\right)\\y-1&=4x+12\\y&=4x+12+1\\y&=4x+13\\\end{aligned}[/tex]

Now, compare the obtained equation of line [tex]y=4x+13[/tex]  with the standard equation of line [tex]y=mx+b[/tex] .

[tex]\begin{aligned}m&=4\\b&=13\\\end{aligned}[/tex]

Therefore, the slope is [tex]4[/tex] .

It is given that both lines are parallel to each other so the product of slope must be equal.

[tex]{m_1}={m_2}[/tex]                                                          …… (1)

Substitute [tex]4[/tex]  for [tex]{m_1}[/tex]  in equation (1) to obtain the value of slope [tex]{m_2}[/tex] .

[tex]{m_2}=4[/tex]  

Therefore, the slope is [tex]4[/tex] .

It is given that the line passes through point [tex]\left({4,32}\right)[/tex] .

The point-slope form of the equation of a line with slope [tex]m[/tex]  passes through point [tex]\left({{x_1},{y_1}}\right)[/tex] is represented as follows:

[tex]y-{y_1}=m\left({x-{x_1}}\right)[/tex]                                       …… (2)

Substitute [tex]4[/tex]  for [tex]{x_1}[/tex] , [tex]32[/tex]  for [tex]{y_1}[/tex]  and [tex]4[/tex]  for [tex]m[/tex]  in equation (2) to obtain the equation of line.

[tex]\begin{aligned}y-32&=4\left({x-4}\right)\\y-32&=4x-16\\y&=4x-16+32\\y&=4x+16\\\end{aligned}[/tex]

Therefore, the equation of line is [tex]y=4x+16[/tex] .    

   

Now, the four options are given below.

[tex]\begin{gathered}{\text{OPTION A}}\to y=-x+33\hfill\\{\text{OPTION B}}\to y=-x+36\hfill\\{\text{OPTION C}}\to y=4x-16\hfill\\{\text{OPTION D}}\to y=4x+16\hfill\\\end{gathered}[/tex]

Since OPTION D matches the solution that is [tex]y=4x+16[/tex] .                                                                                                              

Thus, the equation of line that is parallel to the line [tex]y-1=4\left({x+3}\right)[/tex]  and passes through the point [tex]\left({4,32}\right)[/tex]  is [tex]\boxed{{\mathbf{y=4x+16}}}[/tex]  and it matches with [tex]\boxed{{\mathbf{OPTION}}\,{\mathbf{D}}}[/tex] .

Learn more:

1. Which classification best describes the following system of equations? https://brainly.com/question/9045597

2. What is the value of [tex]x[/tex]  in the equation [tex]x-y=30[/tex]  when [tex]y=15[/tex] ? https://brainly.com/question/3965451

3. What are the values of x? https://brainly.com/question/2093003

Answer Details:

Grade: Junior High School

Subject: Mathematics

Chapter: Coordinate Geometry

Keywords: Coordinate Geometry, linear equation, system of linear equations in two variables, variables, mathematics, equation of line, line, passes through point.