Respuesta :
To solve this we'll use the relationship [tex]distance=rate*time[/tex]. First, we need to find the time in the first scenario:
[tex]120=55t[/tex]
[tex]t=\frac{24}{11}[/tex]
Then substitute this time into the second scenario:
[tex]d=\frac{24}{11}*44=24*4=96[/tex]
[tex]120=55t[/tex]
[tex]t=\frac{24}{11}[/tex]
Then substitute this time into the second scenario:
[tex]d=\frac{24}{11}*44=24*4=96[/tex]