Respuesta :

Call the curve [tex]C[/tex], then the length of [tex]C[/tex] is given by the line integral

[tex]\displaystyle\int_C\mathrm dS=\int_{t=0}^{t=1}\|\mathbf r'(t)\|\,\mathrm dt=\int_{t=0}^{t=1}t\sqrt{9t^2+4}\,\mathrm dt=\frac{13\sqrt{13}-8}{27}[/tex]