Find the coordinates of the missing endpoint if B is the midpoint of AC. C(-5,4), B(-2,5) I need the steps and answer pls and ty

Respuesta :

[tex]\bf \textit{middle point of 2 points }\\ \quad \\ \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) A&({{ x}}\quad ,&{{ y}})\quad % (c,d) C&({{ -5}}\quad ,&{{ 4}}) \end{array}\qquad % coordinates of midpoint \left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right)[/tex]

[tex]\bf \left( \cfrac{-5+x}{2}~,~\cfrac{4+y}{2} \right)=\stackrel{B}{(-2,5)}\implies \begin{cases} \cfrac{-5+x}{2}=-2\\\\ -5+x=-4\\ \boxed{x=1}\\ ----------\\ \cfrac{4+y}{2}=5\\\\ 4+y=10\\ \boxed{y=6} \end{cases}[/tex]

The coordinates of the missing endpoints (1,6) and can be determined by using the midpoint formula.

Given :

  • B is the midpoint of AC.
  • Points  --  C(-5,4), B(-2,5)

The following steps can be used in order to determine the coordinates of the missing endpoint:

Step 1 - According to the given data, points C(-5,4) and B(-2,5).

Step 2 - The mid-point formula is given below:

[tex]\rm x = \dfrac{x_1+x_2}{2}[/tex]

[tex]\rm y = \dfrac{y_1+y_2}{2}[/tex]

Step 3 - Let the endpoint be (x,y).

Step 4 - Now, substitute the values of the points in the above formula.

[tex]\rm -2= \dfrac{-5+x}{2}[/tex]

[tex]\rm 5 = \dfrac{4+y}{2}[/tex]

Step 5 - Simplify the above expression.

x = 1

y = 6

For more information, refer to the link given below:

https://brainly.com/question/10651868