Respuesta :

caylus
Hello,

[tex]If\ n=1\ then\ 3^1 \geq 1+2^1\ since\ 3 \geq 3\\ \textrm{This proves the base case.}\\ \textrm{Now assume this holds for some n = k.}\\ \textrm{We need to show this holds for n = k +1}\\ 3^k \geq 1+2^k\ is\ true.\\ 3^{k+1}=3*3^k \geq 3*(1+2^k)\\ 3^{k+1}=3+(1+2)*2^k=3+2^k+2^{k+1} \geq 3+2^{k+1}\\ 3^{k+1} \geq 1+2^{k+1}\ is\ true. [/tex]