Answer:
5
Step-by-step explanation:
To calculate the volume of each pyramid, we use the formula:
[tex] \Large\boxed{\boxed{ \textsf{Volume} = \dfrac{1}{3} \times \textsf{Base Area} \times \textsf{Height}}} [/tex]
For the left pyramid:
[tex] \textsf{Volume}_{\textsf{left}} = \dfrac{1}{3} \times 25 \times 9\\\\ = \dfrac{225}{3} \\\\= 75 \, \textsf{in}^3 [/tex]
For the right pyramid:
[tex] \textsf{Volume}_{\textsf{right}} = \dfrac{1}{3} \times 30 \times 7\\\\ = \dfrac{210}{3} \\\\= 70 \, \textsf{in}^3 [/tex]
Now, to find how much more sand is in the pyramid with greater volume, we subtract the volume of the smaller pyramid from the volume of the larger pyramid:
[tex] \textsf{Difference} = \textsf{Volume}_{\textsf{left}} - \textsf{Volume}_{\textsf{right}} [/tex]
[tex] \textsf{Difference} = 75 - 70 [/tex]
[tex] \textsf{Difference} = 5 \, \textsf{in}^3 [/tex]
So, there are [tex]\boxed{5} [/tex] cubic inches more sand in the pyramid with greater volume.