The diagram shows a quadrilateral ABCD. 16 cm B 40° 12 cm D AB 16 cm. AD 12 cm. Angle BCD-40°. Angle ADB angle CBD-90°.

Calculate the length of CD. Give your answer correct to 3 significant figures. ​

The diagram shows a quadrilateral ABCD 16 cm B 40 12 cm D AB 16 cm AD 12 cm Angle BCD40 Angle ADB angle CBD90Calculate the length of CD Give your answer correct class=

Respuesta :

Answer:

To find the length of CD, we can use the cosine rule in triangle BCD:

[tex]\[CD^2 = BC^2 + BD^2 - 2 \times BC \times BD \times \cos(\angle BCD)\][/tex]

Given that BC = 16 cm, BD = 12 cm, and [tex]\angle BCD = 40°[/tex], we can plug these values into the formula:

[tex]\[CD^2 = 16^2 + 12^2 - 2 \times 16 \times 12 \times \cos(40°)\][/tex]

Now, let's calculate:

[tex]\[CD^2 = 256 + 144 - 384 \times \cos(40°)\][/tex]

[tex]\[CD^2 = 400 - 384 \times \cos(40°)\][/tex]

[tex]\[CD^2 = 400 - 384 \times 0.766\] (cos(40°) ≈ 0.766)[/tex]

[tex]\[CD^2 ≈ 400 - 294.144\][/tex]

[tex]\[CD^2 ≈ 105.856\][/tex]

[tex]\[CD ≈ \sqrt{105.856}\][/tex]

[tex]\[CD ≈ 10.288\][/tex]

Rounded to three significant figures, the length of CD is approximately 10.3 cm.

mark brainliest