Answer:
see explanation
Step-by-step explanation:
to find f(g(x) substitute x = g(x) into f(x)
f(g(x)
= f(x² + 4)
= 3(x² + 4) - 1
= 3x² + 12 - 1
= 3x² + 11
---------------
to find g(f(x) , substitute x = f(x) into g(x)
g(f(x)
= g(3x - 1)
= (3x - 1)² + 4 ← expand (3x - 1)² using FOIL
= 9x² - 6x + 1 + 4
= 9x² - 6x + 5
--------------------
given that
f(g(x) = 2g(f(x) , that is
3x² + 11 = 2(9x² - 6x + 5) ← distribute parenthesis
3x² + 11 = 18x² - 12x + 10 ( subtract 3x² from both sides )
11 = 15x² - 12x + 10 ( subtract 11 from both sides )
0 = 15x² - 12x - 1
Then it is shown that
15x² - 12x - 1 = 0