WILL GIVE 50 PTS. SOMEONE PLS HELP

Determine whether each sequence below is arithmetic, geometric, or neither. Provide support for your conclusions.

SEQUENCE 1: 1/2 , 7/6 , 11/6 , 5/2 .....
SEQUENCE 2: 1/2 , 1/3 , 2/9 , 4/27 .....​

Respuesta :

Answer:

sequence 1 : arithmetic , sequence 2 : geometric

Step-by-step explanation:

• An arithmetic sequence has a common difference d , between consecutive terms.

A geometric sequence has a common ratio r , between consecutive terms

sequence 1

[tex]\frac{1}{2}[/tex] , [tex]\frac{7}{6}[/tex] , [tex]\frac{11}{6}[/tex] , [tex]\frac{5}{2}[/tex]

Check for common difference , d

[tex]\frac{7}{6}[/tex] - [tex]\frac{1}{2}[/tex] = [tex]\frac{7}{6}[/tex] - [tex]\frac{3}{6}[/tex] = [tex]\frac{4}{6}[/tex] = [tex]\frac{2}{3}[/tex]

[tex]\frac{11}{6}[/tex] - [tex]\frac{7}{6}[/tex] = [tex]\frac{4}{6}[/tex] = [tex]\frac{2}{3}[/tex]

[tex]\frac{5}{2}[/tex] - [tex]\frac{11}{6}[/tex] = [tex]\frac{15}{6}[/tex] - [tex]\frac{11}{6}[/tex] = [tex]\frac{4}{6}[/tex] = [tex]\frac{2}{3}[/tex]

Since there is a common difference of d = [tex]\frac{2}{3}[/tex] , then sequence is arithmetic

sequence 2

[tex]\frac{1}{2}[/tex] , [tex]\frac{1}{3}[/tex] , [tex]\frac{2}{9}[/tex] , [tex]\frac{4}{27}[/tex]

check for common difference , d

[tex]\frac{1}{3}[/tex] - [tex]\frac{1}{2}[/tex] = [tex]\frac{2}{6}[/tex] - [tex]\frac{3}{6}[/tex] = - [tex]\frac{1}{6}[/tex]

[tex]\frac{2}{9}[/tex] - [tex]\frac{1}{3}[/tex] = [tex]\frac{2}{9}[/tex] - [tex]\frac{3}{9}[/tex] = - [tex]\frac{1}{9}[/tex]

It is obvious there is no common difference

check for common ratio , r

[tex]\frac{\frac{1}{3} }{\frac{1}{2} }[/tex] = [tex]\frac{1}{3}[/tex] × [tex]\frac{2}{1}[/tex] = [tex]\frac{2}{3}[/tex]

[tex]\frac{\frac{2}{9} }{\frac{1}{3} }[/tex] = [tex]\frac{2}{9}[/tex] × [tex]\frac{3}{1}[/tex] = [tex]\frac{6}{9}[/tex] = [tex]\frac{2}{3}[/tex]

[tex]\frac{\frac{4}{27} }{\frac{2}{9} }[/tex] = [tex]\frac{4}{27}[/tex] × [tex]\frac{9}{2}[/tex] = [tex]\frac{36}{54}[/tex] = [tex]\frac{2}{3}[/tex]

There is a common ratio of r = [tex]\frac{2}{3}[/tex] , then sequence is geometric

Otras preguntas