Respuesta :

Answer:

Step-by-step explanation:

To integrate the expression (sin²x-cos²x) dx / (sin²x cosx), we can use the following steps:

Rewrite the numerator as -cos(2x).

Rewrite the denominator as cos²x - sin²x.

Use the identity cos²x - sin²x = cos(2x) to simplify the denominator.

Substitute u = sin(x) and du = cos(x) dx to transform the integral into -∫ du/u.

Integrate -ln|u| + C concerning u.

Substitute back u = sin(x) to get the final answer: -ln|sin(x)| + C.

Therefore, the integral of (sin²x-cos²x) dx / (sin²x cosx) is equal to -ln|sin(x)| + C.