ABC is a triangle. AĆ AC = 96 AB = a + 5b a) Express CB in terms of a and b. Fully simplify your answer. b) Given that a = A 3 (³²) 7 as a column vector. and b = a +5b 1 (-¹₂) -2 96 B work out CB C​

Respuesta :

Answer:

[tex]\textsf{(a)}\quad \overrightarrow{CB}=a-4b[/tex]

[tex]\textsf{(b)}\quad \displaystyle\overrightarrow{CB}=\binom{-1}{15}[/tex]

Step-by-step explanation:

Given vectors of triangle ABC:

[tex]\overrightarrow{AB}=a+5b[/tex]

[tex]\overrightarrow{AC}=9b[/tex]

Part (a)

To express vector CB in terms of a and b, we can use the triangle law of vector addition:

[tex]\overrightarrow{CB}=\overrightarrow{CA}+\overrightarrow{AB}[/tex]

Since [tex]\overrightarrow{CA}[/tex] is in the opposite direction to [tex]\overrightarrow{AC}[/tex], then [tex]\overrightarrow{CA}=-9b[/tex].

Therefore:

[tex]\overrightarrow{CB}=-9b+a+5b[/tex]

[tex]\overrightarrow{CB}=a-4b[/tex]

So, vector CB expressed in terms of a and b is:

[tex]\Large\boxed{\boxed{\overrightarrow{CB}=a-4b}}[/tex]

Part (b)

Given column vectors:

[tex]\displaystyle a=\binom{3}{7}\\\\\\b=\binom{1}{-2}[/tex]

Substitute these values into the expression for vector CB from part (a):

[tex]\displaystyle\overrightarrow{CB}=\binom{3}{7}-4\binom{1}{-2}[/tex]

[tex]\displaystyle\overrightarrow{CB}=\binom{3}{7}-\binom{4}{-8}[/tex]

[tex]\displaystyle\overrightarrow{CB}=\binom{3-4}{7-(-8)}[/tex]

[tex]\displaystyle\overrightarrow{CB}=\binom{-1}{15}[/tex]

So, the expression for vector CB as a column vector is:

[tex]\large\boxed{\boxed{\displaystyle\overrightarrow{CB}=\binom{-1}{15}}}[/tex]

Ver imagen semsee45