Respuesta :
let the number be xy then we have the following system of equations:-
y - x = 2....................................................(1)
10x+y + 10y + x = 154
11x + 11y = 154 Divide thru by 11:-
x + y = 14..................................................(2)
Add equation (1) AND (2):-
2y = 16
y = 8
and x = 8-2 = 6
So your required number is 68.
y - x = 2....................................................(1)
10x+y + 10y + x = 154
11x + 11y = 154 Divide thru by 11:-
x + y = 14..................................................(2)
Add equation (1) AND (2):-
2y = 16
y = 8
and x = 8-2 = 6
So your required number is 68.
The value of the original number obtained using a system of linear equations is 68
Let the two digit number = ab
- Tens digit = a
- Unit digit = b
We can create the system of equations as follows :
b - a = 2 - - - - - - - - - - - - (1)
(10b + a) + (10a + b) = 154
10b + a + 10a + b = 154
11b + 11a = 154 - - - - - - - - - (2)
From (1) :
b = 2 + a ----- (3)
Substitute b = 2 + a into (2)
11(2 + a) + 11a = 154
22 + 11a + 11a = 154
22 + 22a = 154
22a = 154 - 22
22a = 132
a = 132 / 22
a = 6
From (3) :
b = 2 + 6
b = 8
Therefore, the original number, ab = 68
Learn more : https://brainly.com/question/18796573