Respuesta :
p(t)=6t
A(p)=πp^2, since p(t)=6t
A(t)=π(p(t))^2
A(t)=π(6t)^2
A(t)=36πt^2, so when t=8 and approximating π≈3.14
A(8)≈36(3.14)(8^2)
A(8)≈36(3.14)64
A(8)≈7234.56 u^2
A(p)=πp^2, since p(t)=6t
A(t)=π(p(t))^2
A(t)=π(6t)^2
A(t)=36πt^2, so when t=8 and approximating π≈3.14
A(8)≈36(3.14)(8^2)
A(8)≈36(3.14)64
A(8)≈7234.56 u^2
Answer:
r(t) = 3t ; where t represents the time in minutes and r represents how far the paint is spreading.
A(r) = πr²
Part A:
A[r(t)] = π (3t)² = 3.14 * 9t² = 28.26t²
Part B:
r(10) = 3(10) = 30
A(r) = 3.14 * 30² = 3.14 * 900 = 2,826 square unit
Step-by-step explanation: