since the vertex is at 0,-4 and the zeros are above it, we'll use a vertical parabola equation, namely with the dependent variable to be the "y".
bear in mind that, a zeor or solution of say -1 and 1, simply means x-intercepts at -1, 0 and 1,0.
[tex]\bf \qquad \textit{parabola vertex form}\\\\
\begin{array}{llll}
\boxed{y=a(x-{{ h}})^2+{{ k}}}\\\\
x=a(y-{{ k}})^2+{{ h}}
\end{array} \qquad\qquad vertex\ ({{ h}},{{ k}})\\\\
-------------------------------\\\\
vertex\ (0,-4)\
\begin{cases}
h=0\\
k=-4
\end{cases}\implies y=a(x-0)^2-4\implies y=ax^2-4
\\\\\\
\textit{we also know that }
\begin{cases}
y=0\\
x=-1
\end{cases}\implies 0=a(-1-0)^2-4
\\\\\\
0=a(-1)^2-4\implies \boxed{4=a}\qquad thus\implies \boxed{y=4x^2-4}[/tex]