Respuesta :
check the picture below.
[tex]\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &Sides&Area&Volume\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array} \\\\ -----------------------------\\\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{\sqrt{s^2}}{\sqrt{s^2}}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------\\\\ [/tex]
[tex]\bf \cfrac{small}{large}\qquad \cfrac{s}{s}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\implies \cfrac{1}{3}=\cfrac{\sqrt[3]{35.28}}{\sqrt[3]{v}}\implies \cfrac{1}{3}=\sqrt[3]{\cfrac{35.28}{v}} \\\\\\ \left( \cfrac{1}{3} \right)^3=\cfrac{35.28}{v}\implies \cfrac{1^3}{3^3}=\cfrac{35.28}{v}\implies v=\cfrac{3^3\cdot 35.28}{1^3}[/tex]
[tex]\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &Sides&Area&Volume\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array} \\\\ -----------------------------\\\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{\sqrt{s^2}}{\sqrt{s^2}}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------\\\\ [/tex]
[tex]\bf \cfrac{small}{large}\qquad \cfrac{s}{s}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\implies \cfrac{1}{3}=\cfrac{\sqrt[3]{35.28}}{\sqrt[3]{v}}\implies \cfrac{1}{3}=\sqrt[3]{\cfrac{35.28}{v}} \\\\\\ \left( \cfrac{1}{3} \right)^3=\cfrac{35.28}{v}\implies \cfrac{1^3}{3^3}=\cfrac{35.28}{v}\implies v=\cfrac{3^3\cdot 35.28}{1^3}[/tex]
