Respuesta :

The product to sum identity formula states


cos(a)sin(b) = (1/2)[sin(a+b) - sin(a-b)]

So simply plug it into that, to get-

(1/2)[sin(2x+5x) - sin(2x-5x)]

Answer:

[tex]\cos(2x)\sin(5x)=\dfrac{\sin (7x)+\sin (3x)}{2}[/tex]

Step-by-step explanation:

Given: [tex]\cos(2x)\sin(5x)[/tex]

Formula:

[tex]\sin A+\sin B=2\sin(\dfrac{A+B}{2})\cos(\dfrac{A-B}{2})[/tex]

[tex]\sin(\dfrac{A+B}{2})\cos(\dfrac{A-B}{2})=\dfrac{\sin A+\sin B}{2}[/tex]

Compare the given expression with formula

[tex]\cos(2x)\sin(5x)=\sin(\dfrac{A+B}{2})\cos(\dfrac{A-B}{2})=\dfrac{\sin A+\sin B}{2}[/tex]

Therefore,

[tex]\dfrac{A+B}{2}=5x\Rightarrow A+B=10x[/tex]

[tex]\dfrac{A-B}{2}=2x\Rightarrow A-B=4x[/tex]

Using two system of equation of A and B to solve for A and B

Add both equation to eliminate B

[tex]2A=14x[/tex]

[tex]A=7x[/tex]

Substitute A into A+B=10x

[tex]7x+B=10x[/tex]

[tex]B=3x[/tex]

Substitute A and B into formula

[tex]\cos(2x)\sin(5x)=\sin(\dfrac{7x+3x}{2})\cos(\dfrac{7x-3x}{2})=\dfrac{\sin (7x)+\sin (3x)}{2}[/tex]

Hence, Product as sum form [tex]\cos(2x)\sin(5x)=\dfrac{\sin (7x)+\sin (3x)}{2}[/tex]