Respuesta :
part A)
[tex]\bf n^{th}\textit{ term of a geometric sequence}\\\\ a_n=a_1\cdot r^{n-1}\qquad \begin{cases} n=n^{th}\ term\\ a_1=\textit{first term's value}\\ r=\textit{common ratio}\\ ----------\\ n=13\\ a_1=1\\ r=2 \end{cases} \\\\\\ a_{13}=1\cdot 2^{13-1}\implies a_{13}=2^{12}\implies a_{13}=4096[/tex]
-----------------------------------------------------------------------------------------
[tex]\bf \qquad \textit{Amount for Exponential change}\\\\ A=P(1\pm r)^t\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{starting amount}\to &1\\ r=rate\to 100\%\to \frac{100}{100}\to &1.00\\ t=\textit{elapsed period}\to &13\\ \end{cases} \\\\\\ A=1(1+1)^{13}\implies A=2^{13}\implies A=8192 \\\\\\ 8192\cdot \cfrac{1}{7000}lb\implies \cfrac{8192}{7000}lb\approx 1.1702857lbs[/tex]
[tex]\bf n^{th}\textit{ term of a geometric sequence}\\\\ a_n=a_1\cdot r^{n-1}\qquad \begin{cases} n=n^{th}\ term\\ a_1=\textit{first term's value}\\ r=\textit{common ratio}\\ ----------\\ n=13\\ a_1=1\\ r=2 \end{cases} \\\\\\ a_{13}=1\cdot 2^{13-1}\implies a_{13}=2^{12}\implies a_{13}=4096[/tex]
-----------------------------------------------------------------------------------------
[tex]\bf \qquad \textit{Amount for Exponential change}\\\\ A=P(1\pm r)^t\qquad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{starting amount}\to &1\\ r=rate\to 100\%\to \frac{100}{100}\to &1.00\\ t=\textit{elapsed period}\to &13\\ \end{cases} \\\\\\ A=1(1+1)^{13}\implies A=2^{13}\implies A=8192 \\\\\\ 8192\cdot \cfrac{1}{7000}lb\implies \cfrac{8192}{7000}lb\approx 1.1702857lbs[/tex]
2^0=.
2^1=2
2^2=4
.
.
.
2^12=4096 grains of wheat on square 13
After 64 days:
Total wheat=2^63 x 2=2^64=18446744073709551616 grains
Weight=18446744073709551616/7000=2,635,249,153,387,078.8 lbs
☺☺☺☺
2^1=2
2^2=4
.
.
.
2^12=4096 grains of wheat on square 13
After 64 days:
Total wheat=2^63 x 2=2^64=18446744073709551616 grains
Weight=18446744073709551616/7000=2,635,249,153,387,078.8 lbs
☺☺☺☺